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1 Introduction

In this brief note we wish to discuss some potential routes to collaboration with Google. We
will revisit some of the potential ways forward to the cloud fromDMTN-072 and try to quantify
what a Proof of Concept might look like. There is also scope for technical collaboration on
infrastructure.

If we go ahead with one specific POC we should define more clearly the goal and duration of
it and how that might feed into future operations.

Margaret/Michelle - should we have - expected results/metrics could also be the next round
and can you look at th technical collaboration section.

2 Technical collaboration

LSST is already a heavy user of Kubernetes (K8s) both internally and via Google Cloud. We
have experienced specific technical issues running on our own K8s enabled hardware such as
excessive start-up times1 and security concerns around integration with the GPFS filesystem.
We believe we are pushing the boundaries of deployments of this sort: any help would be
appreciated, and we provide a testbed outside Google for this type of work.

3 Cloud proofs of concept

Much of the LSST Data Management System (DMS) — and, certainly, everything described
below — is deployable using Kubernetes. This provides us with a lot of flexibility to port our
system across service offerings, and would enable us to easily adopt a hybrid cloud plus on-
premises infrastructure.

Moving to a cloud-based infrastructure could potentially save on personnel, as no hands-on
hardware maintenance would be required. Although this is equivalent to a relatively small
fraction of the construction budget, it would represent a substantial sum dedicated to non-
core-business during operations.

We can probably not move wholesale to the cloud: we are committed to providing a physical
Data Access Center (DAC) in Chile, and some physical hardwaremust remain on themountain

1Solved for now.
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and in the Commissioning Cluster. However, there are potentially a number of opportunities
to migrate a subset of DM services to the cloud if we could see a sensible way forward.

3.1 Qserv: the LSST database

The bespokeQserv database system [LDM-135], under development at SLAC, has not yet been
tested in a cloud based environment. However it is now deployable with Kubernetes, and no
longer requires special hardware: physically attached storage is needed, but this is available
on cloud offerings.

Qserv’s performance characteristics arewell understood, andwould formanexcellent testbed
for LSST operations in a cloud environment. However, Qserv itself is primarily useful in the
context of the Science Platform (Section 3.2), so the longer term benefits of a Qserv-only de-
ployment would be limited.

3.1.1 Potential needs

To set up a Qserv instance we would need at least 40 large nodes with physically attached
storage on the order of 5 terabytes per node. To run a set of convincing tests we would need
that up for order two months.

This would be a demonstration only — the final catalogs (2032) will be order 15PB and the
number of nodes and attached storage eventually have to scale to that size.

3.2 Cloud-based Science Platform

The LSST Science Platform [LSE-319] envisions three key ways in which scientists will inter-
act with LSST data: through a visualization portal, a Jupyter notebook-based interface and
through a variety of web services. These serve as an interface to images stored on disk and
catalog data stored in the Qserv system (Section 3.1). This is an intrinsically cloud-oriented
approach to the problem of accessing large volumes of LSST data: it is based upon user code
being co-located with the data on which it is running.

A key benefit of a cloud-based Science Platform would be scalability: when user demands
exceed the 10% of the compute budget dedicated to serving them, more capacity would at
least be available even if it had to be purchased on demand. There is no analogue to this in
terms of on-premises infrastructure, as cloud bursting from our internal cloud infrastructure
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to a commercial provider would require transferring potentially large amounts of data.

3.2.1 Aside: Public Data Releases

LSST data becomes public two years after its initial release. However there is no project bud-
get allocated to serve this public data, although it remains scientifically valuable. One imag-
ines that a public, cloud-based version of the Science Platform serving old data could be a
valuable resource e.g. for enabling science in underdeveloped countries.

3.2.2 Potential needs

All the Science Platform components are deployable with Kubernetes. The Qserv database
component is a fixed size resource as discussed in Section 3.1.1. In addition one or preferably
two servers should be provisioned for the web services.

Alongside that one needs to have the JupyterHub environment 2; depending on the assumed
load, this is relatively modest as it requires only ∼ 2 servers to set up, and it is recommended
to have 2 CPUs per simultaneous user. For a proof of concept let’s assume we would go with
20 simultaneous users to 40 CPUs or 10 nodes depending on the type of node. Each user
should also have around 4GB of RAM. Ideally, we would also have a batch system controlling
additional compute resources formore extensive analyses, but perhaps for a proof of concept
this may be treated as a desire rather than a requirement.

Firefly also requires at least a pair of servers— these should be 32 cores with 128 GBmemory.
In addition these should have a shared disk volume of order 500GB, preferably SSD.

Finally there is a filesystem to store the image data. Our current code assumes a POSIX filesys-
tem, but we have made some modifications towards supporting an object-store back end.
Additional investment in this direction is unlikely to happen before Fall 2018. LSST will pro-
duce over its lifetime around 60PB of raw image data, the final data volume including the
processed images is estimated to be around 0.5 EB. For the POC 1PB would be sufficient to
evaluate performance and management of a large disk volume.

For the proof of concept we could leave out the Prompt Products Database (PPDB this is a
conventional e.g. Oracle database)3.

2see https://github.com/lsst-sqre/jupyterlabdemo
3This PPDB would be required for the Prompt Processing POC if we go that way

D R A F T 4 D R A F T



Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Google POC DMTN-078 Latest Revision 2018-04-25

3.3 Cloud based prompt processing

Prompt processing [LDM-151] is the umbrella term used to describe processing which pro-
duces data products continuously while LSST operates. Broadly, this falls into three cate-
gories:

1. Image reduction and differencing, in which images are received from the camera, cali-
brated, and compared to deep template images of the same part of sky to identify tran-
sient and variable sources;

2. Alert distribution, in which notifications of transients and variables are distributed to the
community;

3. Moving objects processing, in which solar system objects are identified and their orbits
tracked.

We expect to issue around 107 alerts per night during normal operations. Further, the project
is required to make these alerts available to the community within no more than 60 s of the
telescope shutter closing. This imposes stringent latency and throughput requirements on
items 1 & 2 above. Moving object processing can be run during the day, and is therefore a
less challenging — and for this purpose less interesting — use case.

One night of LSST observing generates appoximately 20 TB of data in a “bursty” fashion (we
visit each field for a total of 37 s, taking two consecutive exposures which are combined by the
data processing system). In addition, the compute resources are more lightly loaded during
the daytime, when they are used to perform fewer and simpler analyses of calibration images.
In order to meet our latency requirements, we have invested in fast networking to enable
rapid transfer of this data to processing systems at NCSA.

Once on the compute systems, data from each of the 189 CCDs in the camera is processed
in parallel: broadly, we expect a single CPU with access to 4GB RAM to handle each CCD
independently, taking somewhat less than aminute to complete. In operations, we anticipate
deploying two separate clusters, or “chains”, with each processing alternating visits.

These processing chains will then feed the results of their processing to the alert distribution
system, based on Apache Kafka4, for distribution to the community. A prototype of this latter
system has already been deployed on Amazon AWS DMTN-028.

4http://kafka.apache.org
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This suggests two, related, proof of concept exercises:

• Demonstrate rapid ingest and image processing;

• Demonstrate at-scale alert distribution.

3.3.1 Potential needs

Demonstrating image processing at scale could be achieved with a single processing chain (ie,
189 CPU cores, with access to 4GB RAM per core). Around 60TB disk storage is required for
a single night of data (including processed data products). However, a smaller dataset could
be defined for testing purposes.

Prompt image processing would also require a database instance to serve as the Prompt
Products Database (PPDB).

Deploying a realistic alert distribution system would require three systems, each with access
to 24 CPU cores and 80GB RAM.

4 Conclusion

A number of potential POCs are discussed above with approximates sizes/needs. We should
pick one or more to develop further.
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B Acronyms

The following is a complete list of acronyms used in this document.

Acronym Description
CCD Charge-Coupled Device
CPU Central Processing Unit
DAC Data Access Center
DM Data Management
DMLT DM Leadership Team
DMTN DM Technical Note
GB GigaByte
GB Giant Branch (star)
GPFS General Parallel File System
K Kelvin; SI unit of temperature
LDM Light Data Management
LSE LSST Systems Engineering (Document Handle)
LSST Large Synoptic Survey Telescope
NCSA National Center for Supercomputing Applications
PB PetaByte
POC Proof Of Concept
RAM Random Access Memory
SLAC Stanford Linear Accelerator Center
SSD Solid-State Disk
TB TeraByte
TN Technical Note
s second; SI unit of time
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